518 research outputs found

    Tropical Plant Responses to Climate Change

    Get PDF
    Editorialinfo:eu-repo/semantics/publishedVersio

    Characterising the agriculture 4.0 landscape - Emerging trends, challenges and opportunities

    Get PDF
    ReviewInvestment in technological research is imperative to stimulate the development of sustainable solutions for the agricultural sector. Advances in Internet of Things, sensors and sensor networks, robotics, artificial intelligence, big data, cloud computing, etc. foster the transition towards the Agriculture 4.0 era. This fourth revolution is currently seen as a possible solution for improving agricultural growth, ensuring the future needs of the global population in a fair, resilient and sustainable way. In this context, this article aims at characterising the current Agriculture 4.0 landscape. Emerging trends were compiled using a semi-automated process by analysing relevant scientific publications published in the past ten years. Subsequently, a literature review focusing these trends was conducted, with a particular emphasis on their applications in real environments. From the results of the study, some challenges are discussed, as well as opportunities for future research. Finally, a high-level cloud-based IoT architecture is presented, serving as foundation for designing future smart agricultural systems. It is expected that this work will positively impact the research around Agriculture 4.0 systems, providing a clear characterisation of the concept along with guidelines to assist the actors in a successful transition towards the digitalisation of the sectorinfo:eu-repo/semantics/publishedVersio

    Rab11 is required for lysosome exocytosis through the interaction with Rab3a, Sec15 and GRAB

    Get PDF
    Funding: This study was supported by Fundaçã o para a Ciência e Tecnologia (FCT): C.E. was supported by a post-doctoral fellowship (SFRH/BPD/78491/2011), L.B.-L. by a PhD fellowship (SFRH/BD/131938/2017) and D.C.B. by the FCT Investigator Program (IF/00501/2014/CP1252/CT0001). This work was developed with the support from the research infrastructure PPBI-POCI-01-0145-FEDER-022122, co-financed by FCT (Portugal) and Lisboa2020, under the PORTUGAL2020 agreement (European Regional Development Fund). This article was supported by the LYSOCIL project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 811087. Deposited in PMC for immediate release.Lysosomes are dynamic organelles, capable of undergoing exocytosis. This process is crucial for several cellular functions, namely plasma membrane repair. Nevertheless, the molecular machinery involved in this process is poorly understood. Here, we identify Rab11a and Rab11b as regulators of calcium-induced lysosome exocytosis. Interestingly, Rab11-positive vesicles transiently interact with lysosomes at the cell periphery, indicating that this interaction is required for the last steps of lysosome exocytosis. Additionally, we found that the silencing of the exocyst subunit Sec15, a Rab11 effector, impairs lysosome exocytosis, suggesting that Sec15 acts together with Rab11 in the regulation of lysosome exocytosis. Furthermore, we show that Rab11 binds the guanine nucleotide exchange factor for Rab3a (GRAB) and also Rab3a, which we described previously as a regulator of the positioning and exocytosis of lysosomes. Thus, our study identifies new players required for lysosome exocytosis and suggest the existence of a Rab11-Rab3a cascade involved in this process.publishersversionpublishe

    Carbon and water footprints in Brazilian coffee plantations - the spatial and temporal distribution

    Get PDF
    The future of many coffee growing regions, such as Brazil, depends on strategies to allow the minimization of the negative impacts of climate change. Still the own contribution of coffee cultivation for global warming is largely unknown. Water and carbon footprints are concepts that indicate the potential negative impact of a specific product, underlining which part of the process is the major responsible for it. In this context, the objective of this study was to quantify and spatialize the water and carbon footprints from coffee crop in different regions of Brazil, and to find the proportional weight of coffee production in the total emission of CO2 and water consumption in the context of Brazilian agriculture. For this end, water and carbon footprints were estimated and spatialized for Brazilian regions along 10 productive seasons (from 2004/2005 to 2014/2015), based on data of plantation area (ha) and coffee production (tons of beans). It is concluded that the estimates of annual carbon and water footprints were 19.791 million t CO2-equivalent and 49,284 million m3 of water, with higher values from the Southeast region. This corresponded to a moderate (ca. 5%) value for the emissions of greenhouse gases, but a relevant water footprint in the context of Brazilian agricultureinfo:eu-repo/semantics/publishedVersio

    Variability of Root System Size and Distribution among Coffea canephora Genotypes

    Get PDF
    This work aimed to evaluate the variability in the distribution of the root system among genotypes of C. canephora cv. Conilon and indicate management strategies for a more efficient mineral fertilization. Root distribution was evaluated in six genotypes. The experimental design was in randomized blocks with three replications. Soil monoliths measuring about 27 cm3 were collected at six different soil depths, at three row distances and nine distances of inter-row planting. The collections were carried out in one plant of each repetition. In total, 1296 samples were evaluated. The roots were washed, digitized and processed to quantify length density, volume, surface area and diameter. The distribution of the root system was characterized using semivariograms. It was observed that the highest concentration of roots occurred in the distances close to the irrigation drippers. There was variation in the distribution of the root system among the genotypes. However, in general, the root system is concentrated at a depth of 0 to 20 cm in the soil, at distances up to 50 cm in the planting row and up to 60 cm in inter-rows. Therefore, the greatest efficiency in nutritional management can be achieved by applying fertilizers within a radius of 50 cm around the plantinfo:eu-repo/semantics/publishedVersio

    Rapid degradation of dominant-negative Rab27 proteins in vivo precludes their use in transgenic mouse models

    Get PDF
    BACKGROUND: Transgenic mice have proven to be a powerful system to study normal and pathological gene functions. Here we describe an attempt to generate a transgenic mouse model for choroideremia (CHM), a slow-onset X-linked retinal degeneration caused by mutations in the Rab Escort Protein-1 (REP1) gene. REP1 is part of the Rab geranylgeranylation machinery, a modification that is essential for Rab function in membrane traffic. The loss of REP1 in CHM patients may trigger retinal degeneration through its effects on Rab proteins. We have previously reported that Rab27a is the Rab most affected in CHM lymphoblasts and hypothesised that the selective dysfunction of Rab27a (and possibly a few other Rab GTPases) plays an essential role in the retinal degenerative process. RESULTS: To investigate this hypothesis, we generated several lines of dominant-negative, constitutively-active and wild-type Rab27a (and Rab27b) transgenic mice whose expression was driven either by the pigment cell-specific tyrosinase promoter or the ubiquitous β-actin promoter. High levels of mRNA and protein were observed in transgenic lines expressing wild-type or constitutively active Rab27a and Rab27b. However, only modest levels of transgenic protein were expressed. Pulse-chase experiments suggest that the dominant-negative proteins, but not the constitutively-active or wild type proteins, are rapidly degraded. Consistently, no significant phenotype was observed in our transgenic lines. Coat-colour was normal, indicating normal Rab27a activity. Retinal function as determined by fundoscopy, angiography, electroretinography and histology was also normal. CONCLUSIONS: We suggest that the instability of the dominant-negative mutant Rab27 proteins in vivo precludes the use of this approach to generate mouse models of disease caused by Rab27 GTPases

    Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions

    Get PDF
    Funding Information: Funding: This work received funding support from national funds from Fundação para a Ciência e a Tecnologia, I.P. (FCT), Portugal, through the research units UIDB/04035/2020 (GeoBioTec) and UIDB/00239/2020 (CEF). Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.This study evaluated the elemental composition of 25 herbal tea plants commonly used in infusions by Portuguese consumers and the contribution to the elemental daily intake of some essential elements. Hydrocotyle asiatica (L.), Matricaria chamomilla (L.), and Melissa officinalis (L.) samples are a rich source of K with around 6.0 mg g−1 while the Asteraceae Silybum marianum (L.) and Echinacea angustifolia (DC.) exhibited 4.9 and 5.6 mg g−1 Ca, respectively. The highest concentrations of S and Zn were noted in Hydrocotyle asiatica (L.), while the highest concentration of Sr was found in Cassia angustifolia (Vahl.). In general, a large variability in the concentrations among different families and plant organs had been observed, except Cu with levels around 30 µg g−1. The principal component analysis (PCA) showed positive correlations between Zn and S and Sr and Ca, also revealing that Hydrocotyle asiatica (L.), Echinacea angustifolia (DC.), Silybum marianum (L.), and Cassia angustifolia (Vahl.) samples, stands out about all other samples regarding the enrichment of macro and micronutrients. The elemental solubility of macronutrients in the infusion is greater than the micronutrient solubility, despite the contribution to the recommended daily intake was weak. As a whole, Cynara scolymus (L.) and Hibiscus sabdariffa (L.) are the species with the best elemental solubilities, followed by Hydrocotyle asiatica (L.). No harmful elements, such as As and Pb, were observed in both the raw material and the infusions.publishersversionpublishe

    Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions

    Get PDF
    This study evaluated the elemental composition of 25 herbal tea plants commonly used in infusions by Portuguese consumers and the contribution to the elemental daily intake of some essential elements. Hydrocotyle asiatica (L.), Matricaria chamomilla (L.), and Melissa officinalis (L.) samples are a rich source of K with around 6.0 mg g-1 while the Asteraceae Silybum marianum (L.) and Echinacea angustifolia (DC.) exhibited 4.9 and 5.6 mg g-1 Ca, respectively. The highest concentrations of S and Zn were noted in Hydrocotyle asiatica (L.), while the highest concentration of Sr was found in Cassia angustifolia (Vahl.). In general, a large variability in the concentrations among different families and plant organs had been observed, except Cu with levels around 30 g g-1. The principal component analysis (PCA) showed positive correlations between Zn and S and Sr and Ca, also revealing that Hydrocotyle asiatica (L.), Echinacea angustifolia (DC.), Silybum marianum (L.), and Cassia angustifolia (Vahl.) samples, stands out about all other samples regarding the enrichment of macro and micronutrients. The elemental solubility of macronutrients in the infusion is greater than the micronutrient solubility, despite the contribution to the recommended daily intake was weak. As a whole, Cynara scolymus (L.) and Hibiscus sabdariffa (L.) are the species with the best elemental solubilities, followed by Hydrocotyle asiatica (L.). No harmful elements, such as As and Pb, were observed in both the raw material and the infusionsinfo:eu-repo/semantics/publishedVersio

    Breeding Elite Cowpea [<em>Vigna unguiculata</em> (L.) Walp] Varieties for Improved Food Security and Income in Africa: Opportunities and Challenges

    Get PDF
    Cowpea, Vigna unguiculata (L.) Walp, is among the most important grain legumes in Africa. Its nutritional value and biological nitrogen fixation (BNF) potential coupled with a high plasticity to environmental conditions places this legume in a unique position in Sub-Saharan Africa (SSA) in the context of food and nutritional security. However, cowpea yield and BNF contribution to agricultural systems in this sub-continent is far behind the average global values. The inability to run effective breeding programs to timely generate and deliver high yielding, nutritious and climate smart cowpea varieties, coupled with poor crop husbandry practices has been in the forefront of the current situation. In this chapter, the main constrains and opportunities to establish and run successful and effective cowpea production and breading programs in SSA are discussed. The discussion is built around the argument that SSA can benefit from its rich collection of landraces, as well as from high-throughput methodologies to assist the screening and the development of adapted, high yielding and nutritious varieties

    A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora

    Get PDF
    Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 C and at two supra-optimal temperatures (37 C, 42 C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 C. Although eCO2 helped to release stress, 42 C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42 C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 C) than previously assumed.info:eu-repo/semantics/publishedVersio
    corecore